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Abstract

This Msc Thesis is focused on the development of the architectures of convolutional neural networks for the recognition of hand movements through surface
electromuscular sighals. For the needs of this work, datasets DB1 and DB5 from Ninapro and DB-c from CapgMyo were selected. For each of them, processing techniques
such as filtering, amplitude normalization and sEMG image creation are implemented. Furthermore, two experimental stages of the present study follow. The first stage
outlines the creation of the neural networks, the process of selecting hyperparameters, but also the results of movement classification for each database. In the second
stage, a study is performed on CapgMyo’s DB-c dataset, to identify the group of electrodes which is the most important in motion recognition. Thus, data of each group of
sensors is altered in two ways. First, recordings are replaced with zero values and then with random noise values. Finally, classification results are listed for each case and
conclusions are summarized.

Methods and Materials Conclusion

Introduction
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Figure 2: Neural network architectures (structures from left to right - DB1, DB5, Db-c).

In the field of Human Computer Interaction, there has been
particular interest in designing interfaces that will allow the
computer to recognhize the movement the user wishes to
perform. The connection between the desired movement and
the device which will execute it, is the electromuscular activity.

Future Directions

Figure 1: Block diagram of the process.

« Try another method of creating seEMG images, such as
frequency transformations or spectrogram.

 Modify the structure of the network and perform
classification with all available data for Ninapro datasets.

» Use or RNNs instead of CNNSs.

Results

When performing a movement, the muscles contract and
dilate, producing electrical signals. These signals can be easily
recorded with the help of surface electromyography. Surface
Electromyography (sSEMGQG) is a hon-invasive method that allows
the recording of the electrical activity of the muscle fibers
during the execution of movements.

Part A: Hand Gesture Classification Part B: Replace data with zeros and noise

Table 1: Classification accuracies (for DB1 and DB5 values refer to mean accuracy and

standard deviation of volunteers: results). In this part, we studied the effect of alteration of

electromuscular signal data on motion recognition. More
specifically, for each one of the 8 teams of electrodes used to
record the DB-c dataset we replace its data in two ways. At first,
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Figure 3: Normalized confusion matrix of 12 gestures of dataset DB-c.
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