
 

Fig. 1. Schematic diagram of the original sensing circuit [5]. 
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Abstract—The Electrical Network Frequency (ENF) Criterion 

is a forensic technique used to identify the authenticity of a 

digital recording. When using this method, frequency changes 

are compared between the background utility hum in the 

evidence and long-term records of the ENF. Recording this 

frequency (also called mains frequency or power line frequency) 

can be performed with the usage of a Raspberry Pi - a small 

single-board computer. The device’s low cost and portability 

present a great advantage, but the limited computational power 

and storage capacity create unique problems on how to compute 

and store the ENF recordings. In this report, a solution is 

presented, in which the utility signal is first recorded through the 

audio port of the device, and the EN instantaneous frequency is 

computed using the Hilbert transform. 
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I.  INTRODUCTION  

Wide area synchronous grids operate at a specific 
frequency (50 Hz in Europe, 60 Hz in the USA). This 
frequency, called the Electrical Network Frequency (ENF) or 
power line frequency, fluctuates through time due to the 
changing unbalances in the demand and production of 
electrical energy. Within the same electrically tied network, the 
fluctuations pattern is the same. As a result, all the loads in the 
electrical network will be supplied with an AC voltage that 
exhibits the same patterns. [1] 

Digital recording equipment connected to the electrical grid 
can pick up the ENF and its harmonics. Thus, every audio 
recording is coupled with the patterns that were simultaneously 
present in the ENF. By using a band bass filter on the audio 
signal to isolate the background utility hum component, and 
comparing the result to a database of ENF recordings, we can 
identify the exact date and time of the audio signal recording, 
as well as any major discontinuities in the evidence. [2] 

To create the database of ENF recordings, a device must be 
connected to the grid in question year-round to monitor the AC 
voltage signal. Therefore, this monitoring of the ENF requires 
the continuous commitment of modest computational 
resources. A personal computer can perform this task for years 
reliably, but this represents an underuse of its processing 
power. There are smaller and cheaper devices that can commit 
to this single task.  

The Raspberry Pi Model 3 is a fitting example of such a 
device. The Raspberry Pi is a small single-board computer 
hailed for its affordability and portability. The manufacturer of 
this computer provides the Raspberry Pi OS (formerly 
Raspbian), a Debian based Linux distribution and promotes the 
use of Python as its main programming language [3][4]. 

The use of a Raspberry Pi for ENF recordings presents 
some challenges related to the hardware constraints of the 
device, processing power, storage space and accuracy. In this 
report, a new approach will be analyzed on dealing with these 
various problems, to create a reliable, accurate and 
computationally efficient Python application to record the ENF 
using a Raspberry Pi Model 3. 

II. THE ORIGINAL APPLICATION 

This project was primarily inspired by the work of a team 
from the Department of Electrical and Computer Engineering 
at the University of Patras, who undertook the task of creating 
an application for ENF recording using a personal computer 
and a custom-built specialized sensing circuit, which can be 
seen in Fig. 1 [5][6]. 

The original application recorded the EN voltage signal 
through a modified power supply unit that lowered the voltage 
from the electrical socket and fed it to the microphone port of a 
laptop. The signal was sampled at 1000 Hz, using the PyAudio 
module of Python. Each sample was represented by a 16-bit 
signed integer number. The resulting digital signal was 
normalized and then saved as a .wav file using the Python 
library wave. Each recording lasted approximately an hour and 
there was a small gap between recordings because the 
recording and storing of the file were executed consecutively 
by a single thread.  
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Fig. 2. Photo of the sensing device (Raspberry Pi, Sound card, connected 

to the internet via Ethernet). 
 

Each hourly recording had a size of about 6.87 MB (1000 
samples per second × 3600 seconds per hour × 2 Bytes per 
sample). When the program detected that the time was 
midnight, it created a zip archive of the previous day’s 
recordings and uploaded it automatically to the cloud. 

A. Problems with the previous approach 

Despite the above-mentioned application’s success at the 
task of ENF recording, there were clear drawbacks to that 
approach. First and foremost, the use of a laptop as a recording 
device committed more computational resources than needed 
to the task. Furthermore, the application only recorded the 
utility network signal, while the frequency had to be extracted 
separately. As a result, the recordings contained redundancies 
that increased the amount of storage space required for the 
database. Another important problem was the gaps between 
hourly recordings, because of the time which was needed to 
store the recordings. All these challenges were the motivation 
behind the undertaking of this project. 

III. THEORITICAL FRAMEWORK 

A. Instantaneous Frequency Calculation 

As discussed in papers such as [11], complex trace analysis 
(a method using the Hilbert transform of a signal) is used to 
calculate its instantaneous frequency. This method considers 
the real signal f(t) whose frequency is to be computed as the 
real part of a complex trace 

F(t)=f(t) + jf*(t) (1) 

Where f*(t) is the quadrature trace of f(t), which can be 
obtained through the Hilbert transform of the signal f(t).  

We can express f(t) as a sinusoidal function with a time 
dependent amplitude A(t) and a time dependent phase θ(t). 
Thus, the complex trace can be represented as follows: 

f(t) = A(t) cosθ(t) (2) 

f*(t) = A(t) sinθ(t) (3) 

F(t) = A(t) (cosθ(t) + j sinθ(t)) = A(t) ejθ(t) (4) 

Equation (4) demonstrates that if the complex trace and 
amplitude are known, the instantaneous phase of f(t) is  

θ(t) = arctan(f*(t) ⁄ f(t)) (5) 

The instantaneous frequency is determined by the derivative of 
the instantaneous phase function θ(t).  

In the case of the current application, the utility voltage 
signal is a discrete time signal. We thus must calculate the 
samples of the Hilbert transform of f(t) (which we call f*[n]) 
and then, the discrete complex trace can be written as: 

F[n] = A[n] ejθ[n] (6) 

As a result, the instantaneous analogue frequency φ[n] can be 
calculated by taking the first difference of the instantaneous 
phase time series. The result is the instantaneous frequency of 
the original signal, as a fraction of its sampling frequency, Fs.  

φ[n] = Fs (θ[n]-θ[n-1])/2π (7) 

With a moving average low pass filter, we can define the 
signal’s average frequency, in a certain small timeframe. 

IV. THE RASPBERRY PI BASED APPLICATION 

A. Hardware 

When creating the new application - which runs on a 

Raspberry Pi 3 Model B - we must consider the special 

hardware restrictions of the device.  

The first problem is that the RPi does not come with a 

pre-installed audio card. A simple solution that was used for 

this project is a USB Sound Card Adaptor. In general, the RPi 

can be connected to other physical hardware to increase its 

functionality [7]. Also, it seems that the available hardware 

does not allow for sample rate other than 48 kHz or 44.1 kHz. 

Thus, we need to sample at one of these frequencies and, after 

capturing the signal, downsample it. 

Just as in the original application, a modified power 

supply unit can be used to feed the utility signal into the USB 

Sound Card microphone port. The whole sensing apparatus can 

be seen in Fig. 2. 

B. The Python Script 

This application was developed using the Python 3 
programming language, along with the libraries PyAudio [8], 
NumPy [9] and SciPy [10].  

To facilitate a seamless transition between different 
recording segments, the app utilizes the Threading module, 
from Python’s standard library. More specifically, the ENF 
extraction and the archiving of the recordings are completed by 
threads other than the main thread. Thus, the application is 
always recording the utility signal, without having to interrupt 
this process to extract its frequency or store it in file. 

C. Recording the utility voltage with PyAudio 

Recording the utility voltage signal takes place in the main 

thread of the application, using the PyAudio module. The 

utility voltage is sampled at 48 kHz from the USB sound 

card’s microphone port, in segments lasting 300 s.  



 

Fig. 3. Block diagram of the processing of each recording segment. 
 

Each recording segment can be characterized by its 

starting time. The samples are represented by short signed 

integers (16-bit integers). Once the 300 seconds elapse, the 

signal is processed by a different thread, before the ENF 

extraction. 

D. Signal Processing 

The processing of the utility voltage signal aims to 

downsample the signal, so that the number of samples in the 

ENF extraction stage is reduced, while also filtering off any 

noise in the data. 

The filtering and downsampling happens in two stages. 

Firstly, a lowpass sinc filter windowed using a Blackman 

window (with a cutoff frequency of 4 kHz and a transition 

band of 2 kHz) is applied to the original discrete-time signal. 

The filtered signal is then normalized and quantized, before 

being downsampled to an intermediate frequency of 6 kHz. 

After the first downsampling, the signal is filtered again 

through a similar windowed sinc filter of cut-off frequency of 

500 Hz and a transition zone of 200 Hz. Finally, the filtered 

signal is normalized, quantized and downsampled to a final 

frequency of 1000 Hz.  

The downsampling compresses the signal, while 

preserving the ENF (close to 50 or 60 Hz) with some of its 

major harmonics. The lowpass filters remove any higher 

harmonics, as well as noise introduced to the signal. Without 

denoising, the conversion of the signal to a lower sampling 

rate would introduce significant temporal aliasing. 

It is important to note that the usage of two filters and an 

intermediate sampling frequency reduces the amount of time 

required for the processing, compared to the case of a single 

filter, with a cut-off frequency of 500 Hz and a transition zone 

of 200 Hz. This is because the two filters used here are 

comprised of less terms (97 for the first filter and 121 for the 

second one), compared to a single filter that achieves the same 

small transition band of 200 Hz (961 terms in this case). 

Considering that the convolve function of NumPy has a 

time complexity of O(NM), in the case of log(N) < M - where 

N is the number of terms of the signal and M is the number of 

terms of the filter - it becomes evident that the two-filter 

method with an intermediate frequency has a lower time 

complexity. In fact, the method utilized in this application is 

timed faster than using one filter and one direct sampling to 1 

kHz. 

E. Frequency Calculation 

Instead of storing the audio file of the utility voltage signal 

itself, we can extract useful features from it, to reduce the 

dimensionality of our data. The most essential of these 

features, in this case, is the ENF as a function of time. We can 

calculate the recorded signal’s instantaneous frequency using 

the complex trace analysis method, as discussed above. In this 

case, we want to sample the ENF at 10 Hz, so we calculate the 

average of 100 instantaneous frequency samples to smoothen 

the estimated frequency and avoid major spikes.  

A potential problem with this method is the big spikes in 

the calculated frequency that occur especially at the beginning 

of recording segments. We can mitigate this issue by 

discarding the first 20 samples of the calculated frequency 

(before smoothing), as these samples are empirically found to 

contain the biggest spikes. 

F. Store and archive the ENF recordings 

After the ENF extraction from the signal, the calculated 

frequencies are stored in a .csv file along with their 

corresponding timestamps. All recorded segments from the 

same date and hour are stored in the same file, which is named 

after the datetime of recording (i.e. the file 

2020_08_01_21.csv contains the ENF measurements taken on 

the 1st of August 2020, approximately between 9 pm and 10 

pm local time). Each row contains a timestamp and its 

corresponding recorded frequency, separated by commas. The 

timestamp follows the format “yyyy/mm/dd HH:MM:SS.f”. 

The instantaneous frequency is stored in Hz, with 6 significant 

figures. 

Finally, when the application detects that there are 

available .csv files with recordings from dates other than the 

current date, the files are grouped by date and archived, using 

the zip format. Each archived zip file contains all the 

recordings of a single day, and it is named according to the 

“yyyy/mm/dd.zip” format. Each zip file is approximately 4 

MB, showing a significant reduction in size, compared to the 

method of storing raw wav files of the recordings. The whole 

process is shown in Fig. 3. 



 

Fig. 4. The wave form (first plot) and the spectrum (second plot) of a recorded segment, after filtering and downsampling. 
 

 

Fig. 5. Approximately an hour of ENF recordings on the 28th of December, 2019, using the Raspberry Pi application. 

G. Start up on boot 

To ensure that the application is always running without 

the user having to log into the Raspberry Pi and run the 

Python script, we can use Cron [12] to schedule the task on 

reboot. Cron is a tool for scheduling tasks on Unix based 

systems. By scheduling the app to run on reboot, we can also 

make sure that the application starts running again even after 

the Raspberry Pi is unexpectedly shut down (e.g. because of a 

blackout). 

H. Using the application 

To start the application, simply connect the USB sound 

card to one of the Raspberry Pi’s USB ports, and afterwards, 

boot the device. Then plug the modified power supply to the 

microphone port of the audio card. The recording of the ENF 

will begin approximately 20 seconds after the application has 

started running, to make sure that the device has enough time 

to boot properly. To ensure that the device is synchronized, 

the user must connect it to the internet before the beginning of 

the recording. In the case that there is no internet access, the 

device will not be properly synchronized in time, and the 

recordings will be mislabeled. 

V. RESULTS 

Using the Raspberry Pi application, we can analyze some 

of the resulting recordings. From Fig. 4, we can observe the 

sinusoidal form of the utility signal (after the two-step filtering 

and downsampling processes), and its corresponding 

spectrum. The signal has, as expected, a strong frequency 

component around 50 Hz (the typical ENF in the European 

Continental Grid) and around its harmonics. 

To validate the accuracy of the recordings using the new 

application, we can compare the calculated ENF for a specific 

time interval, with the corresponding recordings of the original 

application. Figures 5 and 6 depict the aforementioned 

recordings, on the 28th of December, 2019, from both 

applications. At first glance, the two waveforms don’t seem to 

match.  

Nevertheless, if we consider the fact that the original 

application calculates the ENF in 1 second intervals, while the 

Raspberry Pi application provides a more fine-grained 

sampling of the frequency (every 0.1 seconds). If we apply 

some smoothing to the recorded frequencies (using a simple 

exponential low pass filter - Fig. 7), we can observe that the 

two recordings match, albeit with some significant time shift 

(Fig 8). 



 

Fig. 6. The same ENF segment recorded using the original application. 

 

Fig. 7. Comparing the recordings made using the original application, to the ones recorded with the Raspberry Pi application (after smoothing). 

 

Fig. 8. Comparing the two recordings again, after a time shift of 420 seconds. 

 



 

Fig. 9. Comparing the recordings of the new application, before and after 

the adjustments presented in Section V.B. 

A. The problem of accurate time keeping 

One major problem with using the Raspberry Pi as a 

recording device for ENF extraction is the fact that it lacks a 

built-in real-time clock (RTC). When it is connected to the 

internet, the time is set over the network. If there is no 

network connection available when the device boots up, it will 

set the system clock to the last time it had before the last 

shutdown. As the ENF extraction process requires accurate 

timing, the lack of an RTC renders the recordings useless 

without a reliable internet connection. 

B. Final adjustments to the application 

After noting the discrepancy between the old ENF 

recording application, some minor adjustments were made to 

the new application, to reduce the spikes in the recorded 

frequency. Firstly, the application was modified to calculate 

the ENF every second, instead of 10 times per second. This 

modification reduces the size of the resulting file to around 

390KB per day. Also, the modified application applies a 

simple exponential smoothing filter to the time series of 

produced frequencies, with a smoothing factor of 0.1. 

Furthermore, a script to upload the resulting files to the cloud 

was created and integrated to the application. The recordings 

resulting after the adjustments mentioned above are compared 

with the non-adjusted recordings in Fig. 9. 

VI. CONCLUSION 

As demonstrated in this report, the method presented for 

extracting and storing the Electrical Network Frequency 

presents numerous advantages compared to the method 

developed in [5] and [6]. The application is designed to 

operate on a device which is better suited to the computational 

demands of the task. It also directly provides the ENF 

recordings, and thus helps reduce the storage space required 

years of archived recordings. 
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ΑPPENDIX A - PYTHON SOURCE CODE (APP_NEW.PY) 

 

#!/usr/bin/env 
 
# Imports 
from sys import byteorder 
from array import array 
from time import * 
from datetime import datetime 
import threading 
import shutil 
from glob import glob 
import os 
 
import pyaudio 
import csv 
import numpy as np 
from scipy import signal 
 
import upload_zip 
 
# Delay the app for 20 seconds so that the device can boot properly 
sleep(20) 
 
# Global variables 
FORMAT = pyaudio.paInt16 
RATE = 48000  # RaspberryPi can only record at rates of 48 and 44.1 kHz 
CHUNKS_PER_SEC = 2  # Data chunks per second 
CHUNK_SIZE = RATE // CHUNKS_PER_SEC  # Determining chunk size, in samples 
RECLENGTH_IN_SECS = 300  # Seconds of recording before processing and writing on file 
RECLENGTH = RECLENGTH_IN_SECS * CHUNKS_PER_SEC  # Length of recordings in chunks 
DEVICE = 2  # The audio recording device that the data stream comes from 
INTER_RATE = 6000  # The sampling rate of first downsampling 
FINAL_RATE = 1000  # The final sampling rate of the downsampled recording 
PARENT_DIR = "/home/pi/Desktop/CSV_Recording/"  # Change it if parent directory of project changes 
 
log = open(PARENT_DIR + "log.txt", "a")  # log.txt is the log file for the app 
log.write("Running:" + strftime("%Y_%m_%d_%H_%M_%S") + "\n")  # Reports on the app running 
log.close()   
 
class RecordThreadProcess(threading.Thread): 
    """ This class consists of the thread that processes a recording of RECLENGTH chunks 
        (downsampling, noise filtering, normalization), computes the frequency every 100 ms 
        and stores it in a csv file, named for the date and hour that the recording takes place. 
        This class inherits from the Python native threading.Thread class. 
        """ 
    def __init__(self, data, filename, start_time, lpf1, lpf2): 
        """ The constructor of this class inherits all arguments from the threading.Thread class 
            and has additional arguments: 
            data: (array) the samples recorded in the last recording 
            filename: (str) the name of the file the data is to be stored in 
            start_time: (float) the time the recording began 
            lpf1: (numpy array) the first sinc low pass filter 
            lpf2: (numpy array) the second sinc low pass filter. 
            """ 
        super(RecordThreadProcess, self).__init__() 
        self.data = data 
        self.filename = filename 
        self.start_time = start_time 
        self.lpf1 = lpf1 
        self.lpf2 = lpf2 
        self.freq = None  # The freqency calculated every 100 ms 
 
    def run(self): 
 
        self.data = self.noise_filter(self.data, self.lpf1)  # First noise filtering (low pass sinc filter) 
        self.data = self.normalize(self.data)  # Normalizing data after filtering 
        self.data = self.downsample(self.data, RATE, INTER_RATE)  # Downsampling to the INTER_RATE frequency 
 
        self.data = self.noise_filter(self.data, self.lpf2)  # Second noise filtering 
        self.data = self.normalize(self.data)  # Normalizing data after filtering 
        self.data = self.downsample(self.data, INTER_RATE, FINAL_RATE)  # Downsampling to the FINAL_RATE frequency 
 
        ''' The self.freq variable is a dictionary of the frequency of the signal of the recording 
            every 1000 ms along with the ordinal number of the recording. ''' 
        self.freq = self.inst_freq(self.data) 
         
        # Corrects the time stamps of the recording. 
        self.time_stamps() 
         
        # Opens a filename.csv file in the ENF_Recordings directory 
        csv_file = open(PARENT_DIR + "ENF_Recordings/" + self.filename, "a", newline="") 
 



        # Storing timestamps and frequencies in the file 
        write_ = csv.writer(csv_file) 
        for stamp in sorted(self.freq): 
            write_.writerow([stamp, str(round(self.freq[stamp], 4))]) 
 
        csv_file.close() 
 
        return 
 
    def downsample(self, r, rate1, rate2): 
        """Downsamples the input data stream to a new sampling 
           frequency rate2. It returns the downsampled data stream downs_r. 
           Inputs: 
           r: (array) input data stream 
           rate1: (int) sampling frequency of r 
           rate2: (int) sampling frequency of output 
           """ 
        length = len(r) 
        ratio = int(rate1/rate2) # Downsampling ratio 
        downs_size = np.floor(length/ratio) # Size of output array 
        downs_r = array('h', [r[i*ratio] for i in range(int(downs_size))]) 
        return downs_r 
 
    def normalize(self, snd_data): 
        """ Normalizes the input data snd_data and returns 
            an array r""" 
        MAXIMUM = 16384 
        '''The highest value in the input data stream has to have 
           an absolute value of 16384, and all the other samples 
           values should be scaled accordingly''' 
        times = float(MAXIMUM)/max(abs(i) for i in snd_data) 
 
        r = array('h') 
        for i in snd_data: 
            r.append(int(i*times)) 
        return r 
 
    def noise_filter(self, r, lpf): 
        """ Filters the input array r with the low pass 
            filter lpf. The function returns the array r_filtered""" 
        r_filtered = np.convolve(lpf, r, mode='same') 
        return r_filtered 
 
    def inst_freq(self, input_signal): 
        """ This function calculates the instantaneous frequency 
            of the input signal by calculating the instantaneous phase of its complex trace 
            and then taking the first difference of this array, scaled by a factor 
            of fs/2pi. The resulting values are then averaged to smooth out the 
            big spikes in frequency that the method produces. The function returns 
            the dictionary of frequencies smoothed""" 
        input_signal = np.array(input_signal) 
        # Taking the Hilbert transform of the input signal 
        analytic_signal = signal.hilbert(input_signal) 
        # Finding the phase of the Hilbert transform 
        instantaneous_phase = np.unwrap(np.angle(analytic_signal)) 
        # Taking the first difference of the instantaneous phase array 
        instantaneous_frequency = (np.diff(instantaneous_phase) / (2.0 * np.pi) * 1000) 
        # Discarding the first 20 frequency samples, as they tend to show big spikes 
        instantaneous_frequency = instantaneous_frequency[20:] 
        # Creating the dict of smoothed frequencies 
        smoothed = {} 
        mean = 0 
        for i in range(len(instantaneous_frequency)): 
            # We sample the frequency at 1 Hz 
            freq_rate = 1 
            ratio = int(FINAL_RATE/freq_rate) 
            if i % ratio == 0 and i > 0: 
                mean = mean / ratio 
                if i == ratio: 
                    prev_mean = mean 
                mean = 0.1 * mean + 0.9 * prev_mean 
                smoothed[int(i/ratio)] = mean 
                prev_mean = mean 
                mean = 0 
            mean += instantaneous_frequency[i] 
 
        return smoothed 
 
    def time_stamps(self): 
        """ This function turns the keys in the dict of frequencies into 
            proper time stamps.""" 
        temp = {} 
        for sec in self.freq: 
            if type(sec) == int: 
                stamp = sec + self.start_time  # Adds to the sec value the start time of the recording. 



                stamp = datetime.fromtimestamp(stamp)  # Creates a timestamp out of the number. 
                stamp = stamp.strftime("%Y/%m/%d %H:%M:%S") # Formats the timestamp. 
                temp[stamp] = self.freq[sec]  
        self.freq = temp 
 
 
class ArchiveThreadProcess(threading.Thread): 
    """ This class consists of the thread that archives all the files from a previous date. 
        The thread first checks whether archiving is needed and, if this is the case, it proceeds 
        to create a zip file that contains all the recordings that come from the same day. 
        This class inherits from the Python native threading.Thread class. 
        """ 
    def __init__(self): 
        """ The constructor of this class inherits all arguments from the threading.Thread class 
            with no extra arguments.""" 
        super(ArchiveThreadProcess, self).__init__() 
 
    def run(self): 
        """ Begins archiving if it is needed.""" 
        if self.archive_needed(): 
            self.archive() 
        return 
 
    def archive_needed(self): 
        """ This function evaluates whether or not there is the need to archive recordings. 
            This is the case when there are files in the ENF_Recordings director, from at least 2 
            different days.""" 
        filelist = glob(PARENT_DIR + 'ENF_Recordings/*.csv') 
        filelist.sort()  # The oldest file becomes the first on the list 
        if filelist != []: 
            first_file = filelist[0] 
            first_file = first_file.split('/') 
            first_date = first_file[-1][0:10]  # The date of the neweste file 
        else: 
            return False 
         
        for file in filelist: 
            file = file.split('/') 
            date = file[-1][0:10]  # The date of the newest file 
            if date != first_date: 
                return True  # Return True only if the two days are different 
        return False 
 
    def archive(self): 
        """ This function creates a zip archive of all files in ENF_Recordings that come from 
            the oldest date of all the files that are in the folder. It first creates a list of 
            these files and then moves them to the temp directory, before archiving them and then 
            deleting them. It finally uploads the file to Google Drive.""" 
         
        infiles = [] 
        filelist = glob(PARENT_DIR + 'ENF_Recordings/*.csv') 
        filelist.sort() 
        if filelist != []: 
            first_file = filelist[0] 
            first_file = first_file.split('/') 
            first_date = first_file[-1][0:10]  # The oldest date of all files in ENF_Recordings 
         
        for i in range(len(filelist)): 
            file = filelist[i] 
            file = file.split('/') 
            date = file[-1][0:10] 
            if date == first_date: 
                infiles.append(file[-1])  # All the files with the same date as first_date are added to the infiles list 
 
        for file in infiles: 
            shutil.move(PARENT_DIR + "ENF_Recordings/" + file, 
                        PARENT_DIR + "temp/" + file)  # All  files in the infiles list are moved to temp 
         
        shutil.make_archive(PARENT_DIR + 'ENF_Archives/' + first_date, 
                            'zip', PARENT_DIR + 'temp/')  # The files in temp are added to an archive 
        # The name of the archive is the date of the recordings that it contains 
         
        # The files in the temp directory are deleted 
        filelist = glob(PARENT_DIR + 'temp/*.csv') 
        for f in filelist: 
            os.remove(f) 
         
        log = open(PARENT_DIR + "log.txt", "a")  # log.txt is the log file for the app 
        log.write("Running:" + strftime("%Y_%m_%d_%H_%M_%S") + "\n")  # Reports on the app running 
        log.close() 
        upload_zip.upload_zip(first_date + ".zip") 
         
 
def make_lpf(cut, trans, rate): 
    """Makes a low pass filter with a cutoff frequency cut, a transition band 



        of trans hz that corresponds to a sampling rate rate. The filter is a sinc 
        filter combined with a Blackman window. The function returns a numpy 
        array containing the filter terms.""" 
 
    fc = cut/rate # Cutoff frequency as a fraction of the sampling rate (in (0, 0.5)). 
    b = trans/rate  # Transition band, as a fraction of the sampling rate (in (0, 0.5)). 
    # The number of terms of the filter 
    N = int(np.ceil((4 / b))) 
     
    if not N % 2: 
        N += 1  # Make sure that N is odd. 
     
    n = np.arange(N) 
 
    # Compute sinc filter. 
    h = np.sinc(2 * fc * (n - (N - 1) / 2)) 
    # Compute Blackman window. 
    w = 0.42 - 0.5 * np.cos(2 * np.pi * n / (N - 1)) + \ 
        0.08 * np.cos(4 * np.pi * n / (N - 1)) 
     
    # Multiply sinc filter with window. 
    h = h * w 
     
    # Normalize to get unity gain. 
    filter = h / np.sum(h) 
     
    return filter 
     
 
def record(): 
    """ Records a stream of data from the audio device 
        consisting of RECLENGTH chunks. Each chunk consists of 
        CHUNK_SIZE bytes, in a little endian, signed, 
        short int representation. The function also records the 
        start time of the recording and the file in which the data 
        should be recorded in. The output is data (an array of bytes), 
        filename and start_time.""" 
     
    # Every file is named according its date and hour 
    filename = strftime("%Y_%m_%d_%H") + '.csv'   
    start_time = time()  # This is the start time of the recording 
 
    # Opening a pyaudio stream 
    p = pyaudio.PyAudio() 
    stream = p.open(format=FORMAT, channels=1, rate=RATE, 
                    input=True, output=True, 
                    frames_per_buffer=CHUNK_SIZE, 
                    input_device_index=DEVICE) 
     
    # Initializing array optimized for signed short ints 
    data = array('h') 
 
    num_chunks = 0 
    while 1: 
        # Reading data from stream, chunk by chunk  
        # little endian, signed short 
        snd_data = array('h', stream.read(CHUNK_SIZE)) 
        if byteorder == 'big': 
            snd_data.byteswap() 
         
        # Adding data to array 
        data.extend(snd_data) 
        num_chunks += 1 
        # The loop exits when RECLENGTH chunks are read 
        if num_chunks >= RECLENGTH: 
            break 
             
    stream.stop_stream() 
    stream.close() 
    p.terminate() 
     
    return data, filename, start_time 
 
 
if __name__ == '__main__': 
     
    lpf1 = make_lpf(4000, 2000, RATE)  # Low pass filter for first downsampling 
    lpf2 = make_lpf(500, 200, INTER_RATE)  # Lpf for second downsampling 
     
    while 1: 
        # Main loop of the app 
        # First archive files if necessary, in a seperate thread from recording 
        arch_thread = ArchiveThreadProcess() 
        arch_thread.start() 
 



        # Data is recorded with the record() function 
        data, filename, start_time = record() 
         
        # The data is processed and the frequencies recorded are added to the filename file. 
        rec_thread = RecordThreadProcess(data, filename, start_time, lpf1, lpf2) 

        rec_thread.start()

 

 

ΑPPENDIX B. - PYTHON SOURCE CODE (UPLOAD_ZIP.PY) 

 

#!/usr/bin/env 
 
# Imports 
from time import * 
from pydrive.drive import GoogleDrive 
from pydrive.auth import GoogleAuth 
import os 
 
 
def upload_zip(file): 
    PARENT = "/home/pi/Desktop/CSV_Recording/" 
    path = PARENT + "ENF_Archives/" 
 
    gauth = GoogleAuth() 
    gauth.LoadCredentialsFile(PARENT + "mycreds.txt") 
    if gauth.credentials is None: 
        gauth.LocalWebserverAuth() 
    elif gauth.access_token_expired: 
        gauth.Refresh() 
    else: 
        gauth.Authorize() 
    gauth.SaveCredentialsFile(PARENT + "mycreds.txt") 
    drive = GoogleDrive(gauth) 
 
    fid = '1J_S8z7wer3VrCaBk5Krhu0FoLMDaMohg' 
 
    f = drive.CreateFile({"parents":[{"kind":"drive#fileLink", "id": fid}], "title":file}) 
    f.SetContentFile(os.path.join(path, file)) 
    f.Upload() 
    f = None 
    log = open(PARENT + "log.txt", "a")  # log.txt is the log file for the app 
    log.write("Uploaded " + file + " " + strftime("%Y_%m_%d_%H_%M_%S") + "\n")  # Reports on the app running 
    log.close() 
     
    return 

 


