

Fig. 1. Schematic diagram of the original sensing circuit [5].

Electrical Network Frequency Recording using a

Raspberry Pi 3 Model B

Christos Frantzolas

Department of Electrical & Computer Engineering

University of Patras

Patras, Greece

up1053706@upnet.gr

Abstract—The Electrical Network Frequency (ENF) Criterion

is a forensic technique used to identify the authenticity of a

digital recording. When using this method, frequency changes

are compared between the background utility hum in the

evidence and long-term records of the ENF. Recording this

frequency (also called mains frequency or power line frequency)

can be performed with the usage of a Raspberry Pi - a small

single-board computer. The device’s low cost and portability

present a great advantage, but the limited computational power

and storage capacity create unique problems on how to compute

and store the ENF recordings. In this report, a solution is

presented, in which the utility signal is first recorded through the

audio port of the device, and the EN instantaneous frequency is

computed using the Hilbert transform.

Keywords—ENF; Raspberry Pi; Complex Trace Analysis;

Python

I. INTRODUCTION

Wide area synchronous grids operate at a specific
frequency (50 Hz in Europe, 60 Hz in the USA). This
frequency, called the Electrical Network Frequency (ENF) or
power line frequency, fluctuates through time due to the
changing unbalances in the demand and production of
electrical energy. Within the same electrically tied network, the
fluctuations pattern is the same. As a result, all the loads in the
electrical network will be supplied with an AC voltage that
exhibits the same patterns. [1]

Digital recording equipment connected to the electrical grid
can pick up the ENF and its harmonics. Thus, every audio
recording is coupled with the patterns that were simultaneously
present in the ENF. By using a band bass filter on the audio
signal to isolate the background utility hum component, and
comparing the result to a database of ENF recordings, we can
identify the exact date and time of the audio signal recording,
as well as any major discontinuities in the evidence. [2]

To create the database of ENF recordings, a device must be
connected to the grid in question year-round to monitor the AC
voltage signal. Therefore, this monitoring of the ENF requires
the continuous commitment of modest computational
resources. A personal computer can perform this task for years
reliably, but this represents an underuse of its processing
power. There are smaller and cheaper devices that can commit
to this single task.

The Raspberry Pi Model 3 is a fitting example of such a
device. The Raspberry Pi is a small single-board computer
hailed for its affordability and portability. The manufacturer of
this computer provides the Raspberry Pi OS (formerly
Raspbian), a Debian based Linux distribution and promotes the
use of Python as its main programming language [3][4].

The use of a Raspberry Pi for ENF recordings presents
some challenges related to the hardware constraints of the
device, processing power, storage space and accuracy. In this
report, a new approach will be analyzed on dealing with these
various problems, to create a reliable, accurate and
computationally efficient Python application to record the ENF
using a Raspberry Pi Model 3.

II. THE ORIGINAL APPLICATION

This project was primarily inspired by the work of a team
from the Department of Electrical and Computer Engineering
at the University of Patras, who undertook the task of creating
an application for ENF recording using a personal computer
and a custom-built specialized sensing circuit, which can be
seen in Fig. 1 [5][6].

The original application recorded the EN voltage signal
through a modified power supply unit that lowered the voltage
from the electrical socket and fed it to the microphone port of a
laptop. The signal was sampled at 1000 Hz, using the PyAudio
module of Python. Each sample was represented by a 16-bit
signed integer number. The resulting digital signal was
normalized and then saved as a .wav file using the Python
library wave. Each recording lasted approximately an hour and
there was a small gap between recordings because the
recording and storing of the file were executed consecutively
by a single thread.

ANS
DSIP / TR001 / 10.03.2021 - http://dsip.ece.upatras.gr/technical-reports/

Fig. 2. Photo of the sensing device (Raspberry Pi, Sound card, connected

to the internet via Ethernet).

Each hourly recording had a size of about 6.87 MB (1000
samples per second × 3600 seconds per hour × 2 Bytes per
sample). When the program detected that the time was
midnight, it created a zip archive of the previous day’s
recordings and uploaded it automatically to the cloud.

A. Problems with the previous approach

Despite the above-mentioned application’s success at the
task of ENF recording, there were clear drawbacks to that
approach. First and foremost, the use of a laptop as a recording
device committed more computational resources than needed
to the task. Furthermore, the application only recorded the
utility network signal, while the frequency had to be extracted
separately. As a result, the recordings contained redundancies
that increased the amount of storage space required for the
database. Another important problem was the gaps between
hourly recordings, because of the time which was needed to
store the recordings. All these challenges were the motivation
behind the undertaking of this project.

III. THEORITICAL FRAMEWORK

A. Instantaneous Frequency Calculation

As discussed in papers such as [11], complex trace analysis
(a method using the Hilbert transform of a signal) is used to
calculate its instantaneous frequency. This method considers
the real signal f(t) whose frequency is to be computed as the
real part of a complex trace

F(t)=f(t) + jf*(t) (1)

Where f*(t) is the quadrature trace of f(t), which can be
obtained through the Hilbert transform of the signal f(t).

We can express f(t) as a sinusoidal function with a time
dependent amplitude A(t) and a time dependent phase θ(t).
Thus, the complex trace can be represented as follows:

f(t) = A(t) cosθ(t) (2)

f*(t) = A(t) sinθ(t) (3)

F(t) = A(t) (cosθ(t) + j sinθ(t)) = A(t) ejθ(t) (4)

Equation (4) demonstrates that if the complex trace and
amplitude are known, the instantaneous phase of f(t) is

θ(t) = arctan(f*(t) ⁄ f(t)) (5)

The instantaneous frequency is determined by the derivative of
the instantaneous phase function θ(t).

In the case of the current application, the utility voltage
signal is a discrete time signal. We thus must calculate the
samples of the Hilbert transform of f(t) (which we call f*[n])
and then, the discrete complex trace can be written as:

F[n] = A[n] ejθ[n] (6)

As a result, the instantaneous analogue frequency φ[n] can be
calculated by taking the first difference of the instantaneous
phase time series. The result is the instantaneous frequency of
the original signal, as a fraction of its sampling frequency, Fs.

φ[n] = Fs (θ[n]-θ[n-1])/2π (7)

With a moving average low pass filter, we can define the
signal’s average frequency, in a certain small timeframe.

IV. THE RASPBERRY PI BASED APPLICATION

A. Hardware

When creating the new application - which runs on a

Raspberry Pi 3 Model B - we must consider the special

hardware restrictions of the device.

The first problem is that the RPi does not come with a

pre-installed audio card. A simple solution that was used for

this project is a USB Sound Card Adaptor. In general, the RPi

can be connected to other physical hardware to increase its

functionality [7]. Also, it seems that the available hardware

does not allow for sample rate other than 48 kHz or 44.1 kHz.

Thus, we need to sample at one of these frequencies and, after

capturing the signal, downsample it.

Just as in the original application, a modified power

supply unit can be used to feed the utility signal into the USB

Sound Card microphone port. The whole sensing apparatus can

be seen in Fig. 2.

B. The Python Script

This application was developed using the Python 3
programming language, along with the libraries PyAudio [8],
NumPy [9] and SciPy [10].

To facilitate a seamless transition between different
recording segments, the app utilizes the Threading module,
from Python’s standard library. More specifically, the ENF
extraction and the archiving of the recordings are completed by
threads other than the main thread. Thus, the application is
always recording the utility signal, without having to interrupt
this process to extract its frequency or store it in file.

C. Recording the utility voltage with PyAudio

Recording the utility voltage signal takes place in the main

thread of the application, using the PyAudio module. The

utility voltage is sampled at 48 kHz from the USB sound

card’s microphone port, in segments lasting 300 s.

Fig. 3. Block diagram of the processing of each recording segment.

Each recording segment can be characterized by its

starting time. The samples are represented by short signed

integers (16-bit integers). Once the 300 seconds elapse, the

signal is processed by a different thread, before the ENF

extraction.

D. Signal Processing

The processing of the utility voltage signal aims to

downsample the signal, so that the number of samples in the

ENF extraction stage is reduced, while also filtering off any

noise in the data.

The filtering and downsampling happens in two stages.

Firstly, a lowpass sinc filter windowed using a Blackman

window (with a cutoff frequency of 4 kHz and a transition

band of 2 kHz) is applied to the original discrete-time signal.

The filtered signal is then normalized and quantized, before

being downsampled to an intermediate frequency of 6 kHz.

After the first downsampling, the signal is filtered again

through a similar windowed sinc filter of cut-off frequency of

500 Hz and a transition zone of 200 Hz. Finally, the filtered

signal is normalized, quantized and downsampled to a final

frequency of 1000 Hz.

The downsampling compresses the signal, while

preserving the ENF (close to 50 or 60 Hz) with some of its

major harmonics. The lowpass filters remove any higher

harmonics, as well as noise introduced to the signal. Without

denoising, the conversion of the signal to a lower sampling

rate would introduce significant temporal aliasing.

It is important to note that the usage of two filters and an

intermediate sampling frequency reduces the amount of time

required for the processing, compared to the case of a single

filter, with a cut-off frequency of 500 Hz and a transition zone

of 200 Hz. This is because the two filters used here are

comprised of less terms (97 for the first filter and 121 for the

second one), compared to a single filter that achieves the same

small transition band of 200 Hz (961 terms in this case).

Considering that the convolve function of NumPy has a

time complexity of O(NM), in the case of log(N) < M - where

N is the number of terms of the signal and M is the number of

terms of the filter - it becomes evident that the two-filter

method with an intermediate frequency has a lower time

complexity. In fact, the method utilized in this application is

timed faster than using one filter and one direct sampling to 1

kHz.

E. Frequency Calculation

Instead of storing the audio file of the utility voltage signal

itself, we can extract useful features from it, to reduce the

dimensionality of our data. The most essential of these

features, in this case, is the ENF as a function of time. We can

calculate the recorded signal’s instantaneous frequency using

the complex trace analysis method, as discussed above. In this

case, we want to sample the ENF at 10 Hz, so we calculate the

average of 100 instantaneous frequency samples to smoothen

the estimated frequency and avoid major spikes.

A potential problem with this method is the big spikes in

the calculated frequency that occur especially at the beginning

of recording segments. We can mitigate this issue by

discarding the first 20 samples of the calculated frequency

(before smoothing), as these samples are empirically found to

contain the biggest spikes.

F. Store and archive the ENF recordings

After the ENF extraction from the signal, the calculated

frequencies are stored in a .csv file along with their

corresponding timestamps. All recorded segments from the

same date and hour are stored in the same file, which is named

after the datetime of recording (i.e. the file

2020_08_01_21.csv contains the ENF measurements taken on

the 1st of August 2020, approximately between 9 pm and 10

pm local time). Each row contains a timestamp and its

corresponding recorded frequency, separated by commas. The

timestamp follows the format “yyyy/mm/dd HH:MM:SS.f”.

The instantaneous frequency is stored in Hz, with 6 significant

figures.

Finally, when the application detects that there are

available .csv files with recordings from dates other than the

current date, the files are grouped by date and archived, using

the zip format. Each archived zip file contains all the

recordings of a single day, and it is named according to the

“yyyy/mm/dd.zip” format. Each zip file is approximately 4

MB, showing a significant reduction in size, compared to the

method of storing raw wav files of the recordings. The whole

process is shown in Fig. 3.

Fig. 4. The wave form (first plot) and the spectrum (second plot) of a recorded segment, after filtering and downsampling.

Fig. 5. Approximately an hour of ENF recordings on the 28th of December, 2019, using the Raspberry Pi application.

G. Start up on boot

To ensure that the application is always running without

the user having to log into the Raspberry Pi and run the

Python script, we can use Cron [12] to schedule the task on

reboot. Cron is a tool for scheduling tasks on Unix based

systems. By scheduling the app to run on reboot, we can also

make sure that the application starts running again even after

the Raspberry Pi is unexpectedly shut down (e.g. because of a

blackout).

H. Using the application

To start the application, simply connect the USB sound

card to one of the Raspberry Pi’s USB ports, and afterwards,

boot the device. Then plug the modified power supply to the

microphone port of the audio card. The recording of the ENF

will begin approximately 20 seconds after the application has

started running, to make sure that the device has enough time

to boot properly. To ensure that the device is synchronized,

the user must connect it to the internet before the beginning of

the recording. In the case that there is no internet access, the

device will not be properly synchronized in time, and the

recordings will be mislabeled.

V. RESULTS

Using the Raspberry Pi application, we can analyze some

of the resulting recordings. From Fig. 4, we can observe the

sinusoidal form of the utility signal (after the two-step filtering

and downsampling processes), and its corresponding

spectrum. The signal has, as expected, a strong frequency

component around 50 Hz (the typical ENF in the European

Continental Grid) and around its harmonics.

To validate the accuracy of the recordings using the new

application, we can compare the calculated ENF for a specific

time interval, with the corresponding recordings of the original

application. Figures 5 and 6 depict the aforementioned

recordings, on the 28th of December, 2019, from both

applications. At first glance, the two waveforms don’t seem to

match.

Nevertheless, if we consider the fact that the original

application calculates the ENF in 1 second intervals, while the

Raspberry Pi application provides a more fine-grained

sampling of the frequency (every 0.1 seconds). If we apply

some smoothing to the recorded frequencies (using a simple

exponential low pass filter - Fig. 7), we can observe that the

two recordings match, albeit with some significant time shift

(Fig 8).

Fig. 6. The same ENF segment recorded using the original application.

Fig. 7. Comparing the recordings made using the original application, to the ones recorded with the Raspberry Pi application (after smoothing).

Fig. 8. Comparing the two recordings again, after a time shift of 420 seconds.

Fig. 9. Comparing the recordings of the new application, before and after

the adjustments presented in Section V.B.

A. The problem of accurate time keeping

One major problem with using the Raspberry Pi as a

recording device for ENF extraction is the fact that it lacks a

built-in real-time clock (RTC). When it is connected to the

internet, the time is set over the network. If there is no

network connection available when the device boots up, it will

set the system clock to the last time it had before the last

shutdown. As the ENF extraction process requires accurate

timing, the lack of an RTC renders the recordings useless

without a reliable internet connection.

B. Final adjustments to the application

After noting the discrepancy between the old ENF

recording application, some minor adjustments were made to

the new application, to reduce the spikes in the recorded

frequency. Firstly, the application was modified to calculate

the ENF every second, instead of 10 times per second. This

modification reduces the size of the resulting file to around

390KB per day. Also, the modified application applies a

simple exponential smoothing filter to the time series of

produced frequencies, with a smoothing factor of 0.1.

Furthermore, a script to upload the resulting files to the cloud

was created and integrated to the application. The recordings

resulting after the adjustments mentioned above are compared

with the non-adjusted recordings in Fig. 9.

VI. CONCLUSION

As demonstrated in this report, the method presented for

extracting and storing the Electrical Network Frequency

presents numerous advantages compared to the method

developed in [5] and [6]. The application is designed to

operate on a device which is better suited to the computational

demands of the task. It also directly provides the ENF

recordings, and thus helps reduce the storage space required

years of archived recordings.

ACKNOWLEDGMENT

Appreciation is especially expressed to Dr. Athanasios
Skodras, for his help, guidance and providing of technical
expertise throughout this whole project.

The work of Andreas Triantafyllopoulos, Anastasios
Foliadis, George Roustas, Ioannis Krillis, Fanouria Athanasiou,
and Maria Papaioannou for the IEEE Signal Processing Cup
2016 is also acknowledged, as their original application was
the bases for the undertaking of this endeavor.

REFERENCES

[1] Grigoras, Catalin. "Digital audio recording analysis–the electric network

frequency criterion." International Journal of Speech Language and the
Law 12.1 (2005): 63-76.

[2] Huijbregtse, Maarten, and Zeno Geradts. "Using the ENF criterion for
determining the time of recording of short digital audio recordings."
International Workshop on Computational Forensics. Springer, Berlin,
Heidelberg, 2009.

[3] Raspberry Pi Downloads, The Raspberry Pi Foundation
(https://www.raspberrypi.org/downloads/)

[4] Raspberry Pi Documentation: Usage, The Raspberry Pi Foundation
(https://www.raspberrypi.org/documentation/usage/)

[5] Andreas Triantafyllopoulos, Anastasios Foliadis, George Roustas,
Ioannis Krillis, Fanouria Athanasiou, Maria Papaioannou. "Exploring
Power Signatures for Location Forensics of Media Recordings." IEEE
Signal Processing Cup 2016.

[6] Andreas Triantafyllopoulos, Ioannis Krilis, Anastasios Foliadis,
Athanassios Skodras. "A Hilbert-Based Approach to the ENF Extraction
Problem." IEICE Proceedings Series 24.A3-3 (2016).

[7] Raspberry Pi Blog, Introducing Raspberry Pi HATs, The Raspberry Pi
Foundation https://www.raspberrypi.org/blog/introducing-raspberry-pi-
hats/

[8] Install PyAudio, Python Package Index
https://pypi.org/project/PyAudio/

[9] https://numpy.org/

[10] https://www.scipy.org/

[11] Taner, M. Turhan, Fulton Koehler, and R. E. Sheriff. "Complex seismic
trace analysis." Geophysics 44.6 (1979): 1041-1063.

[12] https://www.raspberrypi.org/documentation/linux/usage/cron.md

ΑPPENDIX A - PYTHON SOURCE CODE (APP_NEW.PY)

#!/usr/bin/env

Imports
from sys import byteorder
from array import array
from time import *
from datetime import datetime
import threading
import shutil
from glob import glob
import os

import pyaudio
import csv
import numpy as np
from scipy import signal

import upload_zip

Delay the app for 20 seconds so that the device can boot properly
sleep(20)

Global variables
FORMAT = pyaudio.paInt16
RATE = 48000 # RaspberryPi can only record at rates of 48 and 44.1 kHz
CHUNKS_PER_SEC = 2 # Data chunks per second
CHUNK_SIZE = RATE // CHUNKS_PER_SEC # Determining chunk size, in samples
RECLENGTH_IN_SECS = 300 # Seconds of recording before processing and writing on file
RECLENGTH = RECLENGTH_IN_SECS * CHUNKS_PER_SEC # Length of recordings in chunks
DEVICE = 2 # The audio recording device that the data stream comes from
INTER_RATE = 6000 # The sampling rate of first downsampling
FINAL_RATE = 1000 # The final sampling rate of the downsampled recording
PARENT_DIR = "/home/pi/Desktop/CSV_Recording/" # Change it if parent directory of project changes

log = open(PARENT_DIR + "log.txt", "a") # log.txt is the log file for the app
log.write("Running:" + strftime("%Y_%m_%d_%H_%M_%S") + "\n") # Reports on the app running
log.close()

class RecordThreadProcess(threading.Thread):
 """ This class consists of the thread that processes a recording of RECLENGTH chunks
 (downsampling, noise filtering, normalization), computes the frequency every 100 ms
 and stores it in a csv file, named for the date and hour that the recording takes place.
 This class inherits from the Python native threading.Thread class.
 """
 def __init__(self, data, filename, start_time, lpf1, lpf2):
 """ The constructor of this class inherits all arguments from the threading.Thread class
 and has additional arguments:
 data: (array) the samples recorded in the last recording
 filename: (str) the name of the file the data is to be stored in
 start_time: (float) the time the recording began
 lpf1: (numpy array) the first sinc low pass filter
 lpf2: (numpy array) the second sinc low pass filter.
 """
 super(RecordThreadProcess, self).__init__()
 self.data = data
 self.filename = filename
 self.start_time = start_time
 self.lpf1 = lpf1
 self.lpf2 = lpf2
 self.freq = None # The freqency calculated every 100 ms

 def run(self):

 self.data = self.noise_filter(self.data, self.lpf1) # First noise filtering (low pass sinc filter)
 self.data = self.normalize(self.data) # Normalizing data after filtering
 self.data = self.downsample(self.data, RATE, INTER_RATE) # Downsampling to the INTER_RATE frequency

 self.data = self.noise_filter(self.data, self.lpf2) # Second noise filtering
 self.data = self.normalize(self.data) # Normalizing data after filtering
 self.data = self.downsample(self.data, INTER_RATE, FINAL_RATE) # Downsampling to the FINAL_RATE frequency

 ''' The self.freq variable is a dictionary of the frequency of the signal of the recording
 every 1000 ms along with the ordinal number of the recording. '''
 self.freq = self.inst_freq(self.data)

 # Corrects the time stamps of the recording.
 self.time_stamps()

 # Opens a filename.csv file in the ENF_Recordings directory
 csv_file = open(PARENT_DIR + "ENF_Recordings/" + self.filename, "a", newline="")

 # Storing timestamps and frequencies in the file
 write_ = csv.writer(csv_file)
 for stamp in sorted(self.freq):
 write_.writerow([stamp, str(round(self.freq[stamp], 4))])

 csv_file.close()

 return

 def downsample(self, r, rate1, rate2):
 """Downsamples the input data stream to a new sampling
 frequency rate2. It returns the downsampled data stream downs_r.
 Inputs:
 r: (array) input data stream
 rate1: (int) sampling frequency of r
 rate2: (int) sampling frequency of output
 """
 length = len(r)
 ratio = int(rate1/rate2) # Downsampling ratio
 downs_size = np.floor(length/ratio) # Size of output array
 downs_r = array('h', [r[i*ratio] for i in range(int(downs_size))])
 return downs_r

 def normalize(self, snd_data):
 """ Normalizes the input data snd_data and returns
 an array r"""
 MAXIMUM = 16384
 '''The highest value in the input data stream has to have
 an absolute value of 16384, and all the other samples
 values should be scaled accordingly'''
 times = float(MAXIMUM)/max(abs(i) for i in snd_data)

 r = array('h')
 for i in snd_data:
 r.append(int(i*times))
 return r

 def noise_filter(self, r, lpf):
 """ Filters the input array r with the low pass
 filter lpf. The function returns the array r_filtered"""
 r_filtered = np.convolve(lpf, r, mode='same')
 return r_filtered

 def inst_freq(self, input_signal):
 """ This function calculates the instantaneous frequency
 of the input signal by calculating the instantaneous phase of its complex trace
 and then taking the first difference of this array, scaled by a factor
 of fs/2pi. The resulting values are then averaged to smooth out the
 big spikes in frequency that the method produces. The function returns
 the dictionary of frequencies smoothed"""
 input_signal = np.array(input_signal)
 # Taking the Hilbert transform of the input signal
 analytic_signal = signal.hilbert(input_signal)
 # Finding the phase of the Hilbert transform
 instantaneous_phase = np.unwrap(np.angle(analytic_signal))
 # Taking the first difference of the instantaneous phase array
 instantaneous_frequency = (np.diff(instantaneous_phase) / (2.0 * np.pi) * 1000)
 # Discarding the first 20 frequency samples, as they tend to show big spikes
 instantaneous_frequency = instantaneous_frequency[20:]
 # Creating the dict of smoothed frequencies
 smoothed = {}
 mean = 0
 for i in range(len(instantaneous_frequency)):
 # We sample the frequency at 1 Hz
 freq_rate = 1
 ratio = int(FINAL_RATE/freq_rate)
 if i % ratio == 0 and i > 0:
 mean = mean / ratio
 if i == ratio:
 prev_mean = mean
 mean = 0.1 * mean + 0.9 * prev_mean
 smoothed[int(i/ratio)] = mean
 prev_mean = mean
 mean = 0
 mean += instantaneous_frequency[i]

 return smoothed

 def time_stamps(self):
 """ This function turns the keys in the dict of frequencies into
 proper time stamps."""
 temp = {}
 for sec in self.freq:
 if type(sec) == int:
 stamp = sec + self.start_time # Adds to the sec value the start time of the recording.

 stamp = datetime.fromtimestamp(stamp) # Creates a timestamp out of the number.
 stamp = stamp.strftime("%Y/%m/%d %H:%M:%S") # Formats the timestamp.
 temp[stamp] = self.freq[sec]
 self.freq = temp

class ArchiveThreadProcess(threading.Thread):
 """ This class consists of the thread that archives all the files from a previous date.
 The thread first checks whether archiving is needed and, if this is the case, it proceeds
 to create a zip file that contains all the recordings that come from the same day.
 This class inherits from the Python native threading.Thread class.
 """
 def __init__(self):
 """ The constructor of this class inherits all arguments from the threading.Thread class
 with no extra arguments."""
 super(ArchiveThreadProcess, self).__init__()

 def run(self):
 """ Begins archiving if it is needed."""
 if self.archive_needed():
 self.archive()
 return

 def archive_needed(self):
 """ This function evaluates whether or not there is the need to archive recordings.
 This is the case when there are files in the ENF_Recordings director, from at least 2
 different days."""
 filelist = glob(PARENT_DIR + 'ENF_Recordings/*.csv')
 filelist.sort() # The oldest file becomes the first on the list
 if filelist != []:
 first_file = filelist[0]
 first_file = first_file.split('/')
 first_date = first_file[-1][0:10] # The date of the neweste file
 else:
 return False

 for file in filelist:
 file = file.split('/')
 date = file[-1][0:10] # The date of the newest file
 if date != first_date:
 return True # Return True only if the two days are different
 return False

 def archive(self):
 """ This function creates a zip archive of all files in ENF_Recordings that come from
 the oldest date of all the files that are in the folder. It first creates a list of
 these files and then moves them to the temp directory, before archiving them and then
 deleting them. It finally uploads the file to Google Drive."""

 infiles = []
 filelist = glob(PARENT_DIR + 'ENF_Recordings/*.csv')
 filelist.sort()
 if filelist != []:
 first_file = filelist[0]
 first_file = first_file.split('/')
 first_date = first_file[-1][0:10] # The oldest date of all files in ENF_Recordings

 for i in range(len(filelist)):
 file = filelist[i]
 file = file.split('/')
 date = file[-1][0:10]
 if date == first_date:
 infiles.append(file[-1]) # All the files with the same date as first_date are added to the infiles list

 for file in infiles:
 shutil.move(PARENT_DIR + "ENF_Recordings/" + file,
 PARENT_DIR + "temp/" + file) # All files in the infiles list are moved to temp

 shutil.make_archive(PARENT_DIR + 'ENF_Archives/' + first_date,
 'zip', PARENT_DIR + 'temp/') # The files in temp are added to an archive
 # The name of the archive is the date of the recordings that it contains

 # The files in the temp directory are deleted
 filelist = glob(PARENT_DIR + 'temp/*.csv')
 for f in filelist:
 os.remove(f)

 log = open(PARENT_DIR + "log.txt", "a") # log.txt is the log file for the app
 log.write("Running:" + strftime("%Y_%m_%d_%H_%M_%S") + "\n") # Reports on the app running
 log.close()
 upload_zip.upload_zip(first_date + ".zip")

def make_lpf(cut, trans, rate):
 """Makes a low pass filter with a cutoff frequency cut, a transition band

 of trans hz that corresponds to a sampling rate rate. The filter is a sinc
 filter combined with a Blackman window. The function returns a numpy
 array containing the filter terms."""

 fc = cut/rate # Cutoff frequency as a fraction of the sampling rate (in (0, 0.5)).
 b = trans/rate # Transition band, as a fraction of the sampling rate (in (0, 0.5)).
 # The number of terms of the filter
 N = int(np.ceil((4 / b)))

 if not N % 2:
 N += 1 # Make sure that N is odd.

 n = np.arange(N)

 # Compute sinc filter.
 h = np.sinc(2 * fc * (n - (N - 1) / 2))
 # Compute Blackman window.
 w = 0.42 - 0.5 * np.cos(2 * np.pi * n / (N - 1)) + \
 0.08 * np.cos(4 * np.pi * n / (N - 1))

 # Multiply sinc filter with window.
 h = h * w

 # Normalize to get unity gain.
 filter = h / np.sum(h)

 return filter

def record():
 """ Records a stream of data from the audio device
 consisting of RECLENGTH chunks. Each chunk consists of
 CHUNK_SIZE bytes, in a little endian, signed,
 short int representation. The function also records the
 start time of the recording and the file in which the data
 should be recorded in. The output is data (an array of bytes),
 filename and start_time."""

 # Every file is named according its date and hour
 filename = strftime("%Y_%m_%d_%H") + '.csv'
 start_time = time() # This is the start time of the recording

 # Opening a pyaudio stream
 p = pyaudio.PyAudio()
 stream = p.open(format=FORMAT, channels=1, rate=RATE,
 input=True, output=True,
 frames_per_buffer=CHUNK_SIZE,
 input_device_index=DEVICE)

 # Initializing array optimized for signed short ints
 data = array('h')

 num_chunks = 0
 while 1:
 # Reading data from stream, chunk by chunk
 # little endian, signed short
 snd_data = array('h', stream.read(CHUNK_SIZE))
 if byteorder == 'big':
 snd_data.byteswap()

 # Adding data to array
 data.extend(snd_data)
 num_chunks += 1
 # The loop exits when RECLENGTH chunks are read
 if num_chunks >= RECLENGTH:
 break

 stream.stop_stream()
 stream.close()
 p.terminate()

 return data, filename, start_time

if __name__ == '__main__':

 lpf1 = make_lpf(4000, 2000, RATE) # Low pass filter for first downsampling
 lpf2 = make_lpf(500, 200, INTER_RATE) # Lpf for second downsampling

 while 1:
 # Main loop of the app
 # First archive files if necessary, in a seperate thread from recording
 arch_thread = ArchiveThreadProcess()
 arch_thread.start()

 # Data is recorded with the record() function
 data, filename, start_time = record()

 # The data is processed and the frequencies recorded are added to the filename file.
 rec_thread = RecordThreadProcess(data, filename, start_time, lpf1, lpf2)

 rec_thread.start()

ΑPPENDIX B. - PYTHON SOURCE CODE (UPLOAD_ZIP.PY)

#!/usr/bin/env

Imports
from time import *
from pydrive.drive import GoogleDrive
from pydrive.auth import GoogleAuth
import os

def upload_zip(file):
 PARENT = "/home/pi/Desktop/CSV_Recording/"
 path = PARENT + "ENF_Archives/"

 gauth = GoogleAuth()
 gauth.LoadCredentialsFile(PARENT + "mycreds.txt")
 if gauth.credentials is None:
 gauth.LocalWebserverAuth()
 elif gauth.access_token_expired:
 gauth.Refresh()
 else:
 gauth.Authorize()
 gauth.SaveCredentialsFile(PARENT + "mycreds.txt")
 drive = GoogleDrive(gauth)

 fid = '1J_S8z7wer3VrCaBk5Krhu0FoLMDaMohg'

 f = drive.CreateFile({"parents":[{"kind":"drive#fileLink", "id": fid}], "title":file})
 f.SetContentFile(os.path.join(path, file))
 f.Upload()
 f = None
 log = open(PARENT + "log.txt", "a") # log.txt is the log file for the app
 log.write("Uploaded " + file + " " + strftime("%Y_%m_%d_%H_%M_%S") + "\n") # Reports on the app running
 log.close()

 return

