
EMG-based Gesture Recognition
Marina Georgoula

Marina Georgoula
marinageo19941@gmail.com

Contact Information
1. Atzori, Manfredo & Gijsberts, Arjan & Castellini, Claudio & Caputo, Barbara & Mittaz Hager, Anne-Gabrielle & Elsig, Simone & Giatsidis, Giorgio & Bassetto, Franco & Müller, Henning. (2014). Electromyography data for non-invasive naturally-controlled Robotic 

hand prostheses. Nature. 1. 10.1038/sdata.2014.53. 
2. Pizzolato S, Tagliapietra L, Cognolato M, Reggiani M, Müller H, Atzori M (2017) Comparison of six electromyography acquisition setups on hand movement classification tasks. PLoS ONE 12(10): e0186132. 
3. Geng, W., Du, Y., Jin, W., Wei, W., Hu, Y., and Li, J.(2016). Gesture recognition by instantaneous surface EMG images. Scientific Reports, 6(36571)
4. Tsinganos, P & Cornelis, Bruno & Cornelis, Jan & Jansen, Bart & Skodras, Athanassios. (2019). Deep Learning in EMG-based Gesture Recognition
5. Hussain, Mahbub & Bird, Jordan & Faria, Diego. (2018). A Study on CNN Transfer Learning for Image Classification.
6. Gopalakrishnan, K., Khaitan, S. K., Choudhary, A. N., & Agrawal, A. (2017). Deep Convolutional Neural Networks with transfer learning for computer vision-based data-driven pavement distress detection. Construction and Building Materials, 157, 322-330.
7. Ji, Qingge & Huang, Jie & He, Wenjie & Sun, Yankui. (2019). Optimized Deep Convolutional Neural Networks for Identification of Macular Diseases from Optical Coherence Tomography Images. Algorithms. 12. 51. 10.3390/a12030051
8. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016). Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
9. De Luca, C.J. (2002) Surface Electromyography: Detection and Recording. DelSys Incorporated, 2-10.

References

This MSc. Thesis is dealing with the study and 
implementation of pretrained Convolutional Neural 
Networks and their performance on hand 
movement classification, using surface EMG signals.
The sEMG signal is recorded by surface electrodes, 
whose number varies depending on the database. 
Three public databases are used in this thesis, each 
containing data recorded by different number of 
sensors: DB1 NinaPro (10 electrodes) [1] , DB5 
NinaPro (16 electrodes) [2], DBc CapgMyo (128 
electrodes) [3].
The data of 12 finger movements is preprocessed 
and separated by applying sliding windows to create 
a three-channel sEMG  image. The window size is 
experimentally set and determines the size of the 
image [4]. 
As a first step, each pretrained model, originally 
trained on  ImageNet, is taking a sEMG image as 
input, and implements Transfer Learning [5] in order 
to adjust the model’s parameters to the EMG data. 
The pretrained models used in this thesis are 
VGG16, VGG19 [6], ResNet50 [7], InceptionV3 [8].
As a second step of the experimental procedure, the 
best performing pretrained models for each 
database are used to examine the number and 
position of the electrodes [9].
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Overall, regarding the results of Part A,  the best classified database is 
DBc CapgMyo, possibly due to its high-density EMG data recorded 
from 128 sensors. Among the four pretrained CNN models, the best
performing model is ResNet50 in all three databases achieving an 
average training accuracy of 83,3% and an average testing accuracy of 
74,3%.
For the second part of the experimental procedure, the results of both 
techniques are compared with each other and with the ground truth of 
the electrodes activation for each gesture. The most active electrodes 
are considered to result in very low prediction accuracy when zeroed 
or replaced, and the less active electrodes are the ones to achieve high 
prediction accuracy despite their distortion. As far as their positioning 
in concerned, according to the databases makers, the electrodes where 
randomly and symmetrically positioned around the forearm. 

Conclusions

DB1 NinaPro Electrodes Test Accuracy Test Loss

Most active 7, 8 26 – 30 % 3.99 – 6.07

Less active 3, 4, 5 50 – 67 % ≈856

For Part A, the training of the networks is separated 
in two stages:
• Fine Tuning: Freeze the weights of the first layers 

of networks which capture universal features such 
as curves and edges and train with small learning 
rate

• Training: Freeze all layers of the original model 
and train only the classifier avoiding overfitting 

For Part B, the electrodes are examined by:
• Zeroing the electrode
• Replacing the electrode with random noise

Experimental Procedure

VGG16

INCEPTIONV3

• Redesign pretrained model’s classification layers for better 
performance

• Augment data by adding all hand movements from databases
• Implement Transfer Learning for more pretrained models, such as 

Xception, InceptionV3, ResNeXt.
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Recognition accuracy - A exerise
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Test Accuracy - A Exercise

DB1 NINAPRO DB5 NINAPRO DBc CAPGMYO

DB5 NinaPro Electrodes Test Accuracy Test Loss

Most active 9, 10 24 – 37  % 2.66 – 5.75

Less active 3, 4, 5, 11, 12, 13 46 – 62 % 1.30 – 3.12

DBc CapgMyo Electrodes Test Accuracy Test Loss

Most active [17:32], [65:80] 14 – 38  % 2.92 – 5.91

Less active [97:112], [113:128] 52 – 66 % 1.35 – 2.09

Results – Part A


